Search results for "Margin classifier"

showing 4 items of 4 documents

Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution

2012

We propose an automatic approach to detect falls in home environment. A Support Vector Machine based classifier is fed by a set of selected features extracted from human body silhouette tracking. The classifier is followed by filtering operations taking into account the temporal nature of a video. The features are based on height and width of human body bounding box, the user's trajectory with her/his orientation, Projection Histograms and moments of order 0, 1 and 2. We study several combinations of usual transformations of the features (Fourier Transform, Wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using a si…

Support vector machineDiscrete wavelet transformWaveletMinimum bounding boxComputer sciencebusiness.industryRobustness (computer science)Margin classifierFeature extractionWavelet transformPattern recognitionArtificial intelligencebusiness2012 Eighth International Conference on Signal Image Technology and Internet Based Systems
researchProduct

Adjusted bat algorithm for tuning of support vector machine parameters

2016

Support vector machines are powerful and often used technique of supervised learning applied to classification. Quality of the constructed classifier can be improved by appropriate selection of the learning parameters. These parameters are often tuned using grid search with relatively large step. This optimization process can be done computationally more efficiently and more precisely using stochastic search metaheuristics. In this paper we propose adjusted bat algorithm for support vector machines parameter optimization and show that compared to the grid search it leads to a better classifier. We tested our approach on standard set of benchmark data sets from UCI machine learning repositor…

0209 industrial biotechnologyWake-sleep algorithmActive learning (machine learning)Computer scienceStability (learning theory)Linear classifier02 engineering and technologySemi-supervised learningcomputer.software_genreCross-validationRelevance vector machineKernel (linear algebra)020901 industrial engineering & automationLeast squares support vector machine0202 electrical engineering electronic engineering information engineeringMetaheuristicBat algorithmStructured support vector machinebusiness.industrySupervised learningOnline machine learningParticle swarm optimizationPattern recognitionPerceptronGeneralization errorSupport vector machineKernel methodComputational learning theoryMargin classifierHyperparameter optimization020201 artificial intelligence & image processingData miningArtificial intelligenceHyper-heuristicbusinesscomputer2016 IEEE Congress on Evolutionary Computation (CEC)
researchProduct

<title>Expanding context against weighted voting of classifiers</title>

2000

In the paper we propose a new method to integrate the predictions of multiple classifiers for Data Mining and Machine Learning tasks. The method assumes that each classifier stands in it's own context, and the contexts are partially ordered. The order is defined by monotonous quality function that maps each context to the value from the interval [0,1]. The classifier that has the context with better quality is supposed to predict better than the classifier from worse quality. The objective is to generate the opinion of `virtual' classifier that stands in the context with quality equal to 1. This virtual classifier must have the best accuracy of predictions due to the best context. To do thi…

business.industryComputer sciencemedia_common.quotation_subjectWeighted votingFeature selectionQuadratic classifiercomputer.software_genreMachine learningInformation extractionComputingMethodologies_PATTERNRECOGNITIONKnowledge extractionVotingMargin classifierArtificial intelligencebusinesscomputerClassifier (UML)media_commonSPIE Proceedings
researchProduct

A genetic integrated fuzzy classifier

2005

This paper introduces a new classifier, that is based on fuzzy-integration schemes controlled by a genetic optimisation procedure. Two different types of integration are proposed here, and are validated by experiments on real data sets of biological cells. The performance of our classifier is tested against a feed-forward neural network and a Support Vector Machine. Results show the good performance and robustness of the integrated classifier strategies.

Fuzzy classificationNeuro-fuzzyComputer scienceFuzzy setMachine learningcomputer.software_genreClassification Classifier Ensemble Evolutionary Algorithms.Artificial IntelligenceRobustness (computer science)Genetic algorithmCluster analysisAdaptive neuro fuzzy inference systemLearning classifier systemSettore INF/01 - InformaticaArtificial neural networkStructured support vector machinebusiness.industryPattern recognitionQuadratic classifierSupport vector machineComputingMethodologies_PATTERNRECOGNITIONSignal ProcessingMargin classifierFuzzy set operationsComputer Vision and Pattern RecognitionArtificial intelligencebusinesscomputerClassifier (UML)SoftwarePattern Recognition Letters
researchProduct